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Summary
This report describes the results of research activities associated with the development of rapid design
systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific

subsystems investigated were the interface between model assembly and analysis; and, the high
performance NASA GPS equation solver software system in the Windows NT environment on low cost

high-performance PCs.

Requirements for Analysis Subsystem

The requirements for the analysis subsystem of the ISE were evaluated. It was found that the analysis
subsystem is not integrated into the Model Assembler. This phase of the research identified a need for

better integration to provide rapid analysis response to the ISE system. The changes identified include:

1. Developing a part-oriented analysis subsystem
2. Developing a multi-instance analysis system that would generate data for parts as they are selected by

the Model Assembler

Performance of Equation Solver on PCs
The NASA GPS solver was installed on Windows NT for operation on PCs. The results of a

comprehensive performance study showed that:
1. PCs gave remarkable performance for large problems
2. PCs should be configured with maximum memory to enhance performance.

3. There is a significant difference between compilers. The lntel Fortran 2.0 compiler gave consistently
better performance compared with other market leaders. However, other factors influence the choice

of compilers other than efficiency of the source code.

Purpose of Research
The purpose of this grant was to evaluate the requirements for the rapid analysis subsystem and associated

technology to support the Intelligent Synthesis Environment. The activities associated with this grant were
to focus on the following technology areas:

1. Interface technology (IT)
2. High performance equation solvers, and
3. Methodology for interfacing the analysis subsystem with the ISE environment

Introduction
The NASA has identified the Intelligent Synthesis Environment (ISE) as enabling technology that supports
fulfillment of its mission to design new space and aeronautical systems in the next decade. The

Computational Structures Branch at the NASA Langley Research Center had, at the time of the research
described in this report, begun to develop a prototype software system called NEXTGRADE for
assembling Design Analysis Objects (DOA) to support the analysis subsystem of the ISE. This prototype
was used to evaluate the potential of using the Microsoft Windows/NT operating system to support the

network requirements for the structural design/analysis subsystem for the ISE program and to serve as a
test bed for a structural assembler.

The design/analysis system contains an object-oriented database of part design objects. Each part is a

distinct object containing the part geometry, interface points, lines and surfaces and a finite element model.
The NEXTGRADE system displays parts in the design database iconically. The parts can then be moved

into the active viewing window for display and manipulation. Once in the display window the object's
features such as interface points can be displayed. Two or more parts which comprise a design assembly
can then be commanded to attach at the interface points in a grouping operation. The result of the

operation is visually confirmed by having the objects snap together at the interface; and within the
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NEXTGRADE system an interface data object is generated that includes the parameters associated with the

interface in a form that can be interpreted by the target analysis subsystem.

In this paradigm for assembling analysis models, the interface definition is a key enabling technology. The

technology used at present in the COMET-AR subsystem is that developed by Ransom (JR) et al [1-5] that
allows line-to-line, line-to-surface and surface-to-surface attachment. The new interface technology

augments the established point-to-point procedure for attaching separate components using an

implementation technology termed Multi Point Constraints (MPC). The formulation for the JR interface
element requires the construction of a spline line or surface between the two parts to be joined.

The implementation of the formulation results in system matrices that are non-positive definite that cannot
be solved using standard skyline solvers. To support the solution of large non-positive definite matrices the

NASA supported research that lead to the development of very efficient sparse solvers called GPS that

have been implemented in the COMET-AR system.

Interface Requirements to the Analysis Subsystem
The approach taken in the prototype development of the NEXTGRADE Model Assembler (MA) is to
include the finite element model of the part in the data object. This is restrictive for several reasons:

1. In collaborative design activities involving participants from several organizations the f'mite element

model might not be available for competitive reasons.
2. The response of the part might be defined in terms of flexibility coefficients or component modes.

3. The paradigm of a separate fixed element analysis is probably obsolete, especially with the
development of efficient automated tools for model creation and the potential requirement for
automated mesh refinement to obtain results accurate to within an established error.

These observations result in the conclusion that the production version of the MA must include a more

general database that allows for several forms of the model def'mition, including one associated with the

geometric description of the part.

In the current MA prototype, the input file for the target analysis subsystem, which is limited to COMET-
AR at the present time, is generated from the part finite element models in the linked part list and the

interface definitions generated as a part of the assembly process. The result is a model of the assembly

rather than a model of separate parts coupled by interface elements.

An aitemative paradigm, which is advocated for the production version of the design/analysis subsystem of

the ISE, is to support a high degree of associativity between the MA and the analysis subsystem to improve
the response of the combined subsystem to design requests for analysis. Since multiple computers are
available on the network all available computing resource can be utilized by part-oriented analysis. The

concept, which is described in more detail in a later section, is to directly connect analysis support to MA
operations. When the designer selects an icon and activates it by moving it into the view window, an
analysis sub task can be spawned and assigned to a processor. While the designer is performing further

actions on the MA a major part of the operations associated with the analysis can be performed including at
a minimum the generation and assembly of the system matrices for the part.

The incorporation of macro parallelism utilizing multiple processors will require modifications to the MA
and major modifications to the current architecture of the analysis subsystem. The specifications for new

system architecture for NASTRAN are described in a later section.

Alternative Strategy for Interface Technology
The interface technology developed by JR has been shown to decrease the errors in stress at the interface

several orders of magnitude. However, in the general case when lines of nodes on mating parts do not
align, the strategy is to remesh the surface elements to establish congruency of lines containing nodes.
Remeshing means the current finite element model in the part object is not correct; and, the requirement for



RapidDesignSystemsfor Aerospace Structures Page 4

remeshing also means that macro parallelism cannot be implemented. In addition, the implementation

results in non-positive definite matrices.

The solution strategy for non-positive definite matrices results in having to operate on a dense matrix of
order of the number of the LaGrange multipliers defined in the JR method. The interface might result in a

large number of LaGrange multipliers and therefor a large dense matrix to invert which will be the case in
surface-to-surface interfaces. Alternative strategies for generating constraint equations associated with the

general interface problem should be pursued. Alternative strategies should:
1. Create MPC type relations resulting in a reduction rather than an increase in the size of the assembly

matrix and in a positive definite matrix.
2. Allow parts to be processed independently through the generation and assembly phases.

Requirements for Part-Oriented Analysis Subsystem
The requirements for a part-aware Intelligent Analysis Environment (IAE) subsystem system are:
1. A part is an independent design object and can be processed independently of other parts.

2. A part may be def'med in terms of system matrices, component modes, a finite element model or a

geometric model
3. A part object is polymorphic and can be rotated, translated and combined arbitrarily with other

appropriate part objects using interface definitions.
4. The analysis program should be object-oriented and allow multiple instances part analyses on multiple

processors either on a single computer or over a network of computers
5. The analysis subsystem should be object-connected to the MA. The MA should send part models and

interface definitions to the IAE; and, the IAE should send part-oriented results to the MA

6. The IAS should be support industry standard data structures associated with a single finite element
model.

7. The implementation software platform should support a problem-oriented language, such as DMAP to
allow extension of part-oriented analysis to normal modes and dynamic analysis

Intelligent Analysis Environment (IAE)
The discussion of the proposed IAS is based on using NASTRAN as an implementation platform. It was
chosen for several reasons, not the least of which is that the author is familiar with the NASTRAN
architecture. In addition, NASTRAN is modular and incorporates a procedural language called DMAP.

The IAS will:

• Provide context switching for part-oriented operations.

• Support new model definition data structures

• Allow part loop control in the DMAP program

• Support parametric part objects

• Support part transformations

• Adaptive meshing

• Stress smoothing and error estimation

• Adaptive mesh refinement and interface element generation

The flow diagram for the proposed IAS is shown by Figure 1:
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Figure I IAS Flow Diagram
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Input Data File

The input data file for the IAS will look like a standard NASTRAN data file.
• EXECUTIVE Control

No changes from standard NASTRAN
• CASE Control

Little or no changes from standard NASTRAN
• BULK Data

• Accepts current data file for a single part analysis
• New PART statement required to delimit part objects

Bulk Data Section

|fthe Bulk data contains multiple part instances each model must be encapsulated and contain a complete

part model. The part input supports standard finite element modeling data statements and new data

statements that associate the part with a geometric model.

Specification for the IAS

The objectives of design/Analysis objects is to:

1. Pass the physics model to an analysis program
2. Receive and display results and convergence data

Discussion

The part database objects assembled by NEXTRADE include a finite element model data object for the
part. The finite element model is created independently using a finite element modeling program such as
MSC/PATRAN of FEMAP. After assembling the part objects NEXTGRADE merges the part finite

element objects to create a f'mite element model for the entire assembly that includes the interface

definitions generated in the MA assembly operation.

NEXTGRADE is designed to use existing data structures and modeling capability associated with standard
finite element modeling and analysis programs. When preparing the input file for a target analysis

subsystem NEXTGRADE is constrained by: the following factors:

1. All grid numbers must be unique
2. All element numbers must be unique
3. Few if any, modeling programs attempt to support component modeling based on multiple components

such as superelements in MSC/NASTRAN.
4. Display requirements may differ from analysis requirements. In a three-dimensional stress model the

physics is defined throughout the continuum. However, the maximum stress occurs on the boundary

5. Modelers do not support interface technology such as that developed at NASA Langely by Ransom et
al.

New Paradigm for Design Systems

Combining subsystems and components creates the assembled analysis model. A component, or design
object, is the basic building block that can be combined to create a virtual system model. Design objects
allow the design team to synthesize complex systems by combining design objects using a virtual design

system such as NEXTGRADE.

The data objects must incorporate data and operators which:

1. Define the geometry of the object
2. Define the physical properties of the object
3. Define interface geometry including points, edges and surfaces on which loads and constraints can be

applied and which can be connected to other deign entities.
4. Define external loads and constraints with reference to interface geometry as a function of time or

other parameters.
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5. Definetheanalysismodelintermsofanalysisdatastructures
6. Definethedatastructureforbehavioralvariables.

Defining the Analysis Model

Essentially the design team needs behavioral results that are associated with the quality of the design.

These results may be system behavior such as dynamic response or buckling failure; or, they may be stress-
related component failure indices such as local buckling or fracture. The team is not concerned with

implementation details or even with the type of analysis subsystem that generates the results. However, it
is assumed as part of this discussion that the target analysis subsystem is based on a discrete representation.

Defining Parts

The Part is a Design Analysis Object (DAO) which is completely independent of all other DAOs. The
geometry of a part is not related to the geometry of other parts, as is the case for substructures and super

element. A part object can be attached to other parts by in Interface definition.

A Part object is delimited in the Bulk Data section of the NASTRAN input file by a Part data def'mition,
which is described below, and an ENDDATA statement. Each pair of Part, Enddata statement defines a
DAO instance. If the Bulk Data section does not contain a Part statement then one DAO instance is

defined.

The Part data statement is as follows:

Part, name ,type, refname, cid

Where:

name The name of the part

type primary Contains a complete finite element model
repeat Related to a primary by a coordinate transformation

mirror Related to a primary by a reflective transformation

object Part is described by geometric parameters specified by a

robject data statement
dmi Part is defined by DMI or DMIG data statements

genel Part is defined by a GENEL data statement

refname

cM

Inputt4
The name of a primary element if a transformation, the oid of the robject if
the type is object, the name of the DMI or DMIG if type is dmi, the element

number of a genel if type is genel, or the oid of a file data statement if the

type is inputt4
The identification number for the reference coordinate system, which

defines the orientation of the part relative to the assembly coordinate

system.

Defining the region - Robject

If the DAO is specified to be an object then the DAO object must be defined. It is assumed the analysis is
defined in terms of one or more "regions" where a region is defined by a DAO. The model of the region

may be defined explicitly in terms of finite element primitives such as grid points and element connections;

or, they may be def'med implicitly in terms of higher-order constructs such as hexagonal three-dimensional
regions or quadrilateral two-dimensional regions. For a DAO of object type, a modeling object called

"Robject" which has the following data structure def'mes the region:
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Robject, oid, type, c_loc, c_disp, property_id, x_values, n_values, g_values

Where the fields of the Robject data type are:

oid The object identification number

type The type of object:
Hexa Three dimensional hexagonal field

Quad Two dimensional quadrilateral field
Beam One dimensional beam bending field
Rod One dimensional rod field

Bulk An explicit finite element model

c loc Reference coordinate identification number for geometry

c_disp Reference: coordinate system for displacements

Propery_id Identification number of property specification for the field
x-values Identification number of a rvalue data structure that specifies the coordinates

of the vertices of the region
n values Identification number ofa lvalue data structure that specifies the meshing

parameters for the region

g_values Identification number of a rvalue data structure that defines additional

parameters.

Defining Data Vectors

Sets of integer, real or double precision values are defined by lvalue, rvalue and dvalue data structures,
respectively. These data structures have the following form, using lvalue for example:

Lvalue, id, int, int, int, .... +contl
+contl, int, int, ENDT

The data structure follows the NASTRAN convention of using a statement with 10 fields. The first field is

the data structure name. If more than 8 data fields are required then field I 0 is a continuation mnemonic.

The ENDT string must terminate the data fields.

Boundary loads and constraints applied to the DAO are defined at points, edges and surfaces, depending on
the DAO. The data structures for these entities are:

vertices, vid, oid, int, int, int, .... endt

edges, vid, oid, int, int, int, .... endt

faces, vid, oid, int, int, int, .... endt

where the data associated with these objects is a list of grid identification numbers for the object. These

objects are generated by the intrinsic DAO.

The DAO is responsible for creating and passing the data objects for explicit finite element models. It
should be noted that the DAO need only define the interface and boundary features for the model on which

displacement or force boundary conditions are applied; or, which are interface points. Lines or surface for

other robjects.

Defining General Objects

The DAO objects are COM-type objects that must be linked to the analysis object. When the analysis

program is executed, the input file contains the Robject data entities that point to the linked DAO. For
example, a dynamic link library (DLL) could be associated with each DAO and its oid would then point to

the appropriate DAO. The DAO must include an external function, read_fea, which can be invoked by the
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analysis program to read the model described by the DAO. The input file will also include other runtime

data statements appropriate for the target analysis program.

Assuming NASTRAN is the target analysis subsystem, the object is encapsulated in the Bulk Data. The
uniqueness rules for Bulk Data thus only apply locally to the object. The enhanced NASTRAN system
associates a complete run-time state with each DAO in addition to the run-time state for a traditional f'mite

element model, if any. Each instance of the run-time state is associated with a Part data statement.

Modifying NASTRAN to Support DAO
Each instance of the run-time state creates an entry in a table maintained within the enhanced NASTRAN

system. NASTRAN thus becomes a state machine that allows multiple instances of any data block in a
DMAP solution. The use of the instance table in essence provides a facility for subscripted data blocks.

The model incorporated in each DAO must be capable of:
1. Generating the assembled system matrices
2. Reducing the system matrices to the solution set.
3. Def'ming interface features at which the DAO can be attached to other DAOs.

The enhanced analysis subsystem must support a traditional model as well as multiple DAOs. The DMAP

program will thus include a multi-instance loop for generating and reducing the models for each DAO to
the solution set. This is accomplished by:
1. Modifying the input file processor to accept the new data structures
2. Implementing the object instance table

3. Implementing new DMAP Executive commands that are associated with the instance loop
4. Implementing a new module called ROBJ that generates the following data blocks for each DOA

instance:

The uset table

The equivalence table between internal and external grid point numbers
The reduced stiffness and load matrices

The scalar load table

The material table
etc.

5. Implementing the OBJMA module to:
Read interface data objects from the input
Generate interface matrices

assemble the analysis objects.
6. Implementing the NASA GPS sparse matrix solver to solve the set of symmetric non positive definite

equations

7. Implementing the SDROBJ module to recover the requested behavioral variables for each DOA.

Interface Objects

In addition to the standard finite element modeling entities DOA must include a def'mition of its
interface(s) to other DOAs. An interface specification must then be defined in the Bulk Data section for
each DOA interface. The following interface data statement def'mes the interface between two DOA:

Interface, sid, type, oid, featurel, oid, feature2

Where:

Sial The interface identification number

type The type of interface

PTP The interface element connects points on each DOA that
are aligned

FIELD The interface element is to be generated to connect the
two fields
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The FIELD type interface will generate an interface element using the interface description described in

Ransom (1). The interface is describe by:

1. A set of grids on the DOAs
2. A set of pseudo points on the interface element.

Two matrices are then generated for each DAO:

[M I = -f[N 1_[R],ds
S

[G1 = -lit r [R
S

Where:

[N]i are element interpolation functions
[R]i are LaGrange multiplier interpolation functions

[T]i are interface element interpolation functions

The interface object parameters required to generate these matrices are:
1. The number of pseudo points
2. Order of the LaGrange interpolation

3. The spline parameters

Defining boundary loads

Boundary loads are defined by the lobject data statement

Lobject, oid,lid, feature, f_value, type,l_value, l_cid

Where:

old Object identification number
Lid Load identification number

feature The type of feature to be loaded
vertex Load at a point

edge Load along an edge
face Load on a face
Volume Load over a volume

F value Feature identification number

type Type of load
1 value Identification number for data associated with the feature

l cid Identification number for reference coordinate system

Defining Displacement Boundary Conditions

Displacement boundary conditions are defined by the spcobj data statement:

Spcobj, old, sid, feature, f_value, dof

where:

oid Object identification number

sid Spc set identification number

feature The type of feature to be loaded
vertex Load at a point

edge Load along an edge
face Load on a face

Volume Load over a volume

f_value Feature identification number
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I dof [ Dof codes for displacement degrees of freedom to be constrained

Assembling Objects

The data blocks for each DAO are written to virtual memory. The data blocks include Kfr, Mr, and Gq.

The set of object interface points is specified by the features to be attached to the interface elements. The

interface forces associated with the interface elements is represented by the vector, 0t. The system of

equations in assembled form is:

Where {q} represents the union of all the displacementj%et for all DOA and {q,} is the union of all

interface element displacements.

[_K_ [0][0] ii_l t {q }]{q}_ = [ {f}'1{0}t
{o}J

Evaluation of High-Performance Equation Solving Subsystem
The equation solving subsystem that supports the matrix topology associated with the interface technology
is called the NASA General-Purpose Sparse (GPS) solver.

Purpose of Research
The purpose of the research effort with the GPS solver was to evaluate the high performance GPS routines

for the Intelligent Synthesis Environment, which were only operational at Langley on Unix workstations,
on PC systems. The thesis for this research is that the computer environment supporting ISE will include:

• Pentium II+ class CPU such as the Deschute and Merced chip sets.

• Large memory address space of 2 Gigabytes using Microsoft Windows 95, 98 and NT operating

systems.
• Windows NT being the predominant network system used in the ISE

• Object-oriented encapsulated algorithms optimized for the fastest compiler.

Parameters of the Study

The test object is the established GPS program for efficiently solving large sets of linear equations. The
program was modified to run as either under Windows. Timing algorithms were implemented so that total

wall clock time, Tw, and cpu time, Tepu, were measured for both the factor and solution phases, In all cases
only one load vector was used.

Problem Sizes

The effect of problem size was studied by using four model sizes:

1. A 16,152 degree of freedom model
2. A 54,870 degree of freedom model
3. A 217,918 degree of freedom model

4. A 263,574 degree of freedom model

Computer Hardware
The effect of computer hardware parameters was studied by using two separate computers having different

CPU speeds and memory sizes. The systems used were:
1. System 300 having a 300 MHz CPU and 256 Mbytes of main memory

2. System 333 having a 330 MHz CPU and 128Mbytes of main memory
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Compilers

The effect of compiler efficiently was studied by using three compilers:

1. Digital Visual Fortran 5.0 (DEC)
2. Intel Fortran 2.0 (Intel)
3. Microsott Power Station Fortran 4.0 (MS)

Operating System

The effect of operating system was studied by running the same problem using the same executable on a

dual boot system having both Windows NT and Windows 95. Windows 98 was not released at the time but
since it is a 16 bit operating system it will have approximately the same system performance as Window
95.

Testing
Limited performance comparisons made between Windows NT and Windows 95. All tests were performed

on computers, which were unloaded except for the operating system.

Results of Performance Study

Three tables summarize performance results:
1. The influence of test parameters on the factorization time for the largest of the analysis test problems

2. The influence of test parameters on the solution time for the largest of the n analysis test problems.
3. The influence of problem size for the when running on the system having the largest memory and code

generated by the most optimized compiler.

Factor time for Large Car Model

The following chart shows the factor time for the large car model.
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There are two columns of results for each computer. The fast is the total wall clock time and the second is

the CPU time. For each computer the times for each compiler is listed. It should be noted that:

• The CPU time is considerably less then the wall clock time.

• The CPU time scales with computer speed
• The ratio of wall clock time to CPU time becomes smaller with increase of memory size. Testing of

Model A and B, which tit within main memory for both computers, showed that wall clock and CPU

time were essentially the same.

• System 333 had Windows NT Server and System 300 had Windows NT Workstation installed,

respectively. The system software for NT Server reduces the available application memory by

approximately 32 MB

Solution time for Model D - 265k Equations

The following chart shows the solution time for the large 265k-equation model:

There are two columns of results for each computer. The fast is the total wall clock time and the second is
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The CPU time is very small compared to the wall clock time.
There is no essential difference in the wall clock time for the two computer CPU speeds tested
The ratio of wall clock time to CPU time is much larger for the solution phase as compared with the

factor phase.

Factor Time versus Model Size

The effect of problem size was evaluated by using the code generated by the Intel compiler on the 333 M
Hz computer with 128 MB of memory. The following chart shows the results.

The CPU and wall clock times are presented on a logarithmic scale. The results show that for small model
sizes that fit within memory the CPU and wall clock times are essentially the same. However as for the

size of the problem increases the memory requirements exceed physical memory and the system must page
to disk. The ratio of wall clock to CPU time ranges from 1 to 1 for small problems to 8 to 1 for largest

problem considered in this study.
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Observations

The Pentium II (and the Pentium Pro200) chip design leads to very credible performance on PCs. The

factors optimizing solver performance are:

• Proven GPS algorithm that minimizes memory requirement and CPU time.
• Windows NT that is 3 time faster than Windows 95.

• Equation reordering method is the major algorithmic factor affecting factor speed.

• Large physical memory reduces paging size. (PC computers currently support 1 gigabyte of main

memory and will support 2 GB in the near future.)
• Performance as measured by wall clock to CPU time is better for the factor phase than the solve phase.

• Factor time scales with CPU speed

• The compiler choice can have a significant effect on solution time. The Intel compiler generated

optimized code that was up to two times faster than code generated by other compilers.

Future Research

The model assembly and analysis subsystem are major subsystem in the Intelligent Synthesis Environment
and must support rapid robust simulation repose to the design teams. In order to improve the response of

the analysis subsystem the following tasks are identifies for future research.
1. Develop and test the architecture of part-oriented analysis

2. Develop and test course grain parallel processing in the new system architecture
3. Continually evaluate GPS performance on latest 32 bit and 64-bit PCs

• Establish a cooperative research and development program with a major PC vendor

• Assess impact of large memory and faster processors
4. Develop and implement algorithms to speed response of the GPS subsystem

• Improve reordering algorithms
• Improve the solve wall clock to cpu time ratio to be commensurate with that for factorization

5. Evaluate methods for macro parallelism on multi-processor PCs
6. Evaluate the Linux operating system and available Fortran compilers as an option to Windows NT


